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Brokken has proposed a method for orthogonal rotation of one matrix such that its columns
have a maximal sum of congruences with the columns of a target matrix. This method employs
an algorithm for which convergence from every starting point is not guaranteed. In the present
paper, an iterative majorization algorithm is proposed which is guaranteed to converge from
every starting point. Specifically, it is proven that the function value converges monotonically,
and that the difference between subsequent iterates converges to zero. In addition to the better
convergence properties, another advantage of the present algorithm over Brokken’s one is that
it is easier to program. The algorithms are compared on 80 simulated data sets, and it turned out
that the new algorithm performed well in all cases, whereas Brokken’s algorithm failed in
almost half the cases. The derivation of the algorithm is given in full detail because it involves
a series of inequalities that can be of use to derive similar algorithms in different contexts.
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In several situations researchers want to compare factors from one study to those
obtained in a different study. Because factors and their loadings are determined up to
a rotation only, it is often advocated to use this rotational freedom by rotating the one
solution such that it maximally resembles the other (target) solution. One procedure for
such a matching rotation was proposed by Green (1952), also see Cliff (1966). In 
method (called "Procrustes rotation" henceforth) a loading matrix A(n x r) is rotated
by an (r x r) orthonormal matrix T such that it optimally resembles a target loading
matrix B(n x r) in the least squares sense. Procrustes methods involving translations
and isotropic scalings in addition to rotations (e.g., see Goodall, 1991) are ignored in the
present paper, because such transformations are not allowed in the comparison of
factor loading matrices.

Brokken (1983) explains that the criterion used in Procrustes rotation is too re-
strictive for comparing factor loadings: Whereas proportionality of corresponding col-
umns in A T and B is sufficient for inferring invariance of factors, the criterion used in
Procrustes rotation is only 0 (implying a perfect match) when corresponding columns 
A T and B are equal. For this reason, Brokken proposed an alternative procedure for
orthogonal rotation of a loading matrix so as to optimally match a target loading matrix.
His procedure aims at maximizing the average congruence between the columns of the
rotated factor loading matrix and the target loading matrix. The congruence (Tucker,
195 l) between two columns measures the degree of proportionality of two columns, and
it has been advocated as a primary tool for comparison of factor structures (e.g., ten
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Berge, 1986). Hence maximizing a sum of congruences seems preferable in cases where
factor loading matrices are to be rotated towards each other.

Recently, Koschat and Swayne (1991) proposed an algorithm for weighted Pro-
crustes analysis, and showed that their procedure could be employed in a procedure for
maximizing the. sum of squared congruences between corresponding columns of A T
and B. They argue that "a change from tk = 0 to ~b = .3 [~b is the congruence] means
that there is no change in the assessment .of ’no association’, while a change from ~b =
.7 to ~b = 1 means a change from ’mild association’ to ’strongest possible association’.
This suggests that instead of considering the sum of the $i, one ought to consider the
self weighted sum of the 4~i" (P. 238).. However, their argument seems somewhat
subjective: One could just as well claim that a change from th = 0 to ~b = .44 is more
substantial than a change from ~b = .9 to $ = 1, whereas in terms of ~b2 the change is
¯ 19 in both cases. It seems that the choice for. ~ or ~b2 cannot be settled by arguments
only. An empirical comparison of both methods, however, has so far been hampered by
the complications of Brokken’s a!g~fithm. The present paper proposes an alternative
algorithm for Brokken’s method, andthus facilitates such a comparison.

As mentioned above, Brokken (!983) proposed to maximize the sum of congru-
ences between corresponding C0iumn~: of a T and B. Specifically, he proposed to max-
imize

r

f(T) ~’~ ~b(at~i b~), (1)

where ~b denotes Tucker’s (1951) coefficient f congruence, tt denotes the/-th column
ofT, and bt denotes the/-th column of B, l = 1, . , r. The coefficient th is defined
as the normalized inner product between two columns; for cases where one of the
vectors is zero, th is defined here to be zero. We can rewrite (1) 

f(T) = ~ (t’lA’Atl) 1/2(b~b/) 1/2’ (2)

where it is to be kept in mind that a term is defined to be zero if the denominator is zero¯
It should be noted that the function (2) is insensitive to columnwise rescalings of A 
and/or B. ..

Brokken (1983) proposed to solve the problem of maximizing f(T) subject to T’ 
I by solving the normal equation of the Lagrangian function G(T, 19) = f(T) 
[®(TT’ - I)], and used a Newton-iteration maximization procedure for doing so (p.
344). A potential problem of Brokken’s application of the Newton method (henceforth
called "Brokken’s algorithm") is that it does not always converge. That is, conver-
gence of the Newton method is only guaranteed if the algorithm is started in the
immediate vicinity of a (local) optimum or saddle-point, or when it lands in such 
vicinity by coincidence. Hence, in order to use Brokken’s algorithm, we need a good
start for the rotation matrix. In cases where the columns of AT and B have nearly equal
sums of squares, the Procrustes solution can be expected to furnish such a good start
for T. This is because the Procrustes rotation maximizes the weighted sum of congru-
ence coefficients (see Korth & Tucker, 1976, p. 533), and in case AT and B have the
same column sums of squares the weights are all identical. In other cases, however, no
such good start is available, and, as will be demonstrated below, Brokken’s algorithm
will fail to find the global maximum.

The purpose of the present paper is to develop an alternative algorithm for max-
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imizing f(T) subject to T’T = I, that increases f monotonically, converges from every
starting point, and is relatively easy to program. The monotonically convergent algo-
rithm for maximizing f will be based on "majorization" (see, for instance, de Leeuw 
Heiser, 1980; Meulman, 1986; Kiers, 1990; Groenen, 1993). Because majorization is
used for minimization problems, we consider the problem of minimizing h(T) --- - f(T),
which is, obviously, equivalent to maximizing f(T). The majorization approach can 
used for minimizing h(T), by iteratively decreasing h(T) as follows. Let the current 
be denoted by Tc. Suppose g(T, Tc) is a function of T and Tc such that h(T) -< g(T,
Tc) for all T (i.e., g(T, T¢) majorizes h(T)), and c) = g(Tc, Tc). Also, suppose that
we have a procedure for updating Tc by Tm such that g(Tm, Tc) <-- g(Tc, Tc). Then
this procedure decreases h, because h(Tm) -< g(Tm, Tc) <- g(Tc, Tc) = h(Tc). Note
that "decrease" is used for "not increase", for reasons of readability. Hence, if, for a
given Tc, we can find a function g such that h(T) -< g(T, Tc) for all T (possibly subject
to a constraint on T), and h(Tc) g(Tc, Tc), and if we know howto mini mize g, we
can construct an algorithm that monotonically decreases h(T). Therefore, the deriva-
tion of our algorithm will mainly consist of the derivation of a sequence of inequalities
to establish a majorizing function g(T, Tc).

In the first section, the inequalities that are to be used for establishing the majoriz-
ing function will be derived. In the second section, the majorizing function will be
defined, and it will be shown how this canbe minimized. In a third section, the resulting
algorithm for maximizing f(T) is summarized schematically, especially for those who
want to program the algorithm without studying the derivation. Finally, in the fourth
section, some results on the performance of the algorithms for maximizing f are given.

Some Inequalities for Establishing the Majorizing Function

In the present section, the inequalities are derived that are needed to establish a
function that majorizes h(T) = -f(T). Some of these inequalities can be found in 
literature, but all proofs will be given here for the sake of completeness. The inequal-
ities are denoted as Lemmas 1 through 6.

Lemma 1. Let x and y be real positive numbers. Then

_y-1/2 ~ x-lyl/2 _ 2X-1/2, (3)

with equality iff x = y.
1/2 2 > 1/2 1/2 <Proof. From (x 1/2 172 y ) - 0 it follows that 2x y - x + y. After division

by xy1/2, we obtain 2x- _< y-l/2 + x-lyl/2 from which (3) follows at once. We have
equality iff(x 1/2 - yl/2)2 = 0, hence itfx = y. []

Lemma 2. Let x and y be real numbers such that x > 0 and y -> 0. Then

1 xl12 1 X_I/2.
y 1/2 _< ~ + ~

Y, (4)

with equality iffx = y. (See, Groenen & Heiser, 1991, p. 14).

Proof. From (x~/2 - yl/2)2x-1/2 >- 0 it follows at once that yl/2 <_ ½xl/2 +
1 - 1/2 = y 1/2, hence x = y. []~x y, with equality iffx~/2

Lemma 3. Let x and y be real positive numbers. Then
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_y-1/2 < 3
1

-- --2 X-1/2 + "~ X-3/2y, (5)

with equality iff x = y.

Proof. Combining Lemma 1 and Lemma 2 by applying Lemma 2 to y 1/2 in the right
1 --1/2 x

hand side of (3), we have -3 ,71/2 <- x-ly 1/2 - 2x -1/2 -< x-l( x1/2 + ~x yj -

2x-1/2= --~x3 -1/2 + ~X! -3/2y,. with equality iffx = y. []

Lemma 4. Let x1, x2, Yl and Y2 be real numbers such that xI > 0, x2 > 0,

Y l -> 0 and Y2 > 0. Then

--yly~ 1 <-- XlX~2y2 + X*~Ix~Iy21 -- 3x~’lyl, (6)

with equality iffx I = Yl and x2 = Y2.

Proof. If Y l = 0, (6) follows at once as a strict inequality. It remains to prove (6)
for Yl > 0. From (y~/2y~l/2 _ x~/2x~ly~/2)2 >_ it fol lows tha t -yl y~1

1 -3/2XlX~2y2 - 2x~/2x~lyl~/2. From Lemma 3, we have -y1-1/2 < - ~=x~1/2 + $Xl Yl,

hence 2xl/2x -1 -1/2 < .2xl/2x-1- 1 2 YlYl -- t 1 2 Yl)t-~ ~ 1 Yl) =-3x~lYl +
x~-lx2-1yl 2, with equality iffxl = Yl. Combining these inequalities, we have (6) 
once. We have equality in (6) iffx~ = Yl and (yl~/2y2-1/2 - x~/2x~ly~/2) = 0, hence

iffXl = Yl and x2 = Y2. []

Lemma 5. Let x and y be real numbers, and define sgn (x) to be -1, 0, or 1, ifx
is negative, zero, or positive, respectively. Then

-lyl--< -sgn (x) .y, (7)

with equality iff x and y have the same sign or y = 0.

Proof. If y = 0, the inequality follows trivially as an equality. If y # 0 and x = 0,
then (7) follows trivially as a strict inequality. If y # 0, and x # 0, the inequality (sgn
(x) - sgn (y))2 _> 0 yields sgn (x)sgn (y) <- 1. Substituting sgn (y) = 
obtain sgn (x)y <- lyl, from which (7) follows at once, with equality iff sgn (x) = 
(y). 

Lemma 6. Let x and y be vectors of order r such that x’x = y’y = 1, let Z be a
square matrix of order r x r, and let A be a positive value larger than or equal to the

1 1 ~
largest eigenvalue of S -- ~Z + ~Z. Then

y’Zy -< -x’Zx + 2x’(S - Al)y + 2A, (8)

with equality for every choice of A iffx = y. (See, Heiser, 1987, p. 345; also, see Kiers,
1990).

Proof. Define e -- y - x, hence y = x + e. Then y’Zy = x’Zx + x’(Z + Z’)e 
e’Ze = x’Zx + 2x’Se + e’Ze. Because e’Ze = e’Se and e’Se -< Ae’e, we have y’Zy -<
x’Zx + 2x’Se + Ae’e = x’Zx + 2x’S(y - x) + A(y - x)’(y - x) = -x’Zx + 
- 2Ax’y + Ay’y + Ax’x, from which (7) follows at once. Equality in (7) for all choices
of A holds iff x = y.

The inequalities derived here can now be used to establish an algorithm for max-
imizing fiT).
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Maximization of f(T) via Majorization

In the present section, an algorithm is derived for minimizing h(T) = -fiT) over
orthonormal matrices T. Before doing so, we will first simplify the notation by defining
wt =- A’bt(b~bl) -1/2, and C ~ A’A. Note that, if h/is a zero vector, we take wt equal
to a zero vector as well, because the corresponding value of ~b is zero by definition.
Then h(T) can be written 

r

h(T) = -~, w[tt(t~Ctl)-~/2, (9)
l=l

where w~tt(t~Ct~) -1/2 is defined to be zero if (t~Ct~) = O. Rather than focusing on 
we can monotonically decrease h(T), we will focus on decreasing the function

~(T) =-~ Iw~ttl(t~Ctz)-1/2. (10)
l=l

As will be shown, the procedure for decreasing ~(T) can easily be adjusted such that 
decreases h(T) as well.

We will now derive a procedure for updating a current matrix T, denoted as Tc
(with columns tf, ... , tr c) such that ~(T) -< ~(Tc). We will first find a function g(T,
Tc) such that g(T, To) >- ~(T) and g(Tc, Tc) = ~(Tc), next show that the T that
minimizes g(T, To) decreases ~(T), and finally show how the function g(T, Tc) can be
minimized. To find such a function g(T, T¢), we will find functions that majorize each
of the terms of ~(T). First, we consider the terms for which ]w~t/c] ~ 0; after that 
will consider the terms for which Iw[tfl -- 0 (which are very unlikely to be encountered
in practice).

To find a useful majorizing function for ~(T) we have to find majorizations of the
terms -Iw[tll(tiCtl) -~/2, l = 1, ... , r, that are (relatively) simple in terms of tI.
Clearly, then, we need a majorization that no longer employs the complicating term
(t[Ct~)-~/2. It can be seen that Lemma 4, with Yl = Iw[t/[ and Y2 = (t[Ctt)~/2 yields
such a majorization of -Iwjttl(t~Ctt)- 1/2. Specifically, we apply Lemma 4 to each term
of ~(T), for which [wltfl ~ 0. We define the fixed scalar pt =-- (tf’Ctf), which is
positive because Pl = 0 implies wit/c = 0, and apply Lemma 4 to xl = Iwltfl, x2 =
p//2, yl = Iw[t/I, and Y2 = (t[Ct/)1/2. It should be noted that Lemma 4 requires that
xI > 0, x2 > 0, y~ -> 0 and Y2 > 0. Hence Lemma 4 only holds if we make the
additional assumption that Y2 = (t~Ct/) 1/2 > 0; the case where t[Ct~ = 0 will be treated
separately. According to Lemma 4, see (6), we have

--]w~tll(t~Ctl) -1/2 ~< p~llw~tfl(t~Ctl) 1/2 -k p~-l/2lw~tfl-l(w~t/)2

- 3pfl/2[w’~tt[-- hl(tt) + h2(tt) + h3(t~), 

where hi, h2 and h3 are defined implicitly in (I1). Note that, when t I = tf, we have
equality in (11), as we require of the majorization functions we use. If t~Ctl = O, the
derivation of (11) no longer holds, but (11) does hold: The left hand side is zero 
definition; the right hand side is zero because t~Ct~ = 0 implies that wit/ = 0. Hence,
we no longer have to distinguish between cases for t~Ctl ~ 0 and t[Ctt = 0. We will
now majorize the functions hi, h2, and h3 separately.

To majorize h1, we apply Lemma 2 to (t[Ct/). By setting x = Pl (x > 0) and y 
t~CtI (y -> 0), we have, see (4),
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1 p/12 1 -1/2 ,
(t~Ctt) 1/2 __< ~ -[- ~ pt (t~Ct~). (12)

Next, applying Lemma 6 to (t[Ct/), we find, taking x = c, y = t l , Z = S = C,and
A = p (which denotes the first eigenvalue of C),

(t~Ct~) -< -t~’Ct~ + 2t~’(C pl )tl + 2p (13)

Combining (12) and (13) we obtain

1 p//2 _ 1 -1/2.c,.~.c + p~l/2t~,(C _ pI)tl + pp~-l/2
(t~Ct/) 1/2 _.~ ~ Pl

1 p~/2 1 -1/2 -1/2=- - ~ p~ p~ + p~l/2t~’(C - pl)t~ + ppt
2

= p~l/2t~’(C - pl)t~ + ppi-1/2 (14)

Because p1-11w[tfl > 0, it follows from (14) that

hi (t/) pt-llw~t~l(t~ct~)1/2 _<Cl + p~-3121w~t~lt~’(c - pl)-- gl (t~), (15)

where cI is a constant.
To majorize h2, we apply Lemma 6 to (w~t/) 2 = t~w/w[tt. By setting x = tf, y =

t~, Z = S = wlw[, and A = w~w~ (which is the first eigenvalue of wtw[), we obtain

(w~t/) 2-< -tt w/w/tt + 2t~’(w/w~ - W~Wll)tl + 2w~w/. (16)

Hence, because pl-l/2[w[tf[ > O,

h2(t/)= pfl/2lw~t~l’l(w~tl)2 < -pfl/2lw’~t~l-l"c’- LI WIWlI,l,, c

+ 2p~-l/21w~t~l-lt~’(w~w~ - W~WlI)tl + 2p~-l/21w~t~l-lw~w~

-1/2=c2 +2p~ [w/t/[ t~ (wtw~-w}w~l)t~--g2(t~), (17)

where c2 is a constant.
Finally, to majorize ha, we apply Lemma 5 to Iw[tll. Taking x = w}t/c, and y =

w~tt, we obtain

-Iw~tt[ -< -sgn (w~t~) ¯ w~t/. (18)

Hence, because 3p/-1/2 > 0,

h3(tt) = -3p~I/2lw~tl[ <- -3p~1/2" sgn (w~t~) ¯ w~t~ -= g3(t/). (19)

Above, we have found functions that majorize h~, h2, and h3, respectively, and
hence jointly majorize the/-th term of ~(T) if Iw~ffl ~ 0. The terms for which Iw[t~c[ =
0, on the other hand, must be majorized in a different way. A simple way is to use the
constant function k(t/) = 0, with equality if t~ = t/c. This follows at once from the fact
that -Iw~tll(t[Ctl) -~/2 <- O. Hence, upon combination of the latter result with (11),
(15), (17), and (19), it follows 
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r

~(T) =-~ Iw~tll(t~Ctt) -1/2<- ~ hi(t/)+ ~ h2(t/)+ ~ h3(t/)-E 

l= 1 lEA lEA lEA lEA

+ ~ g2(t/)+ ~’~ g3(t/)----g(T, Tc), (20)
lEA

where El~A denotes that the summation is only over the values of I for which Iw[ttCl #
0. Thus, we have established a function g(T, Tc) that majorizes ~(T).

It has been mentioned above that, in order to be useful for updating T, the ma-
jorizing function should be such that g(Tc, Tc) = ~(Tc). That this is indeed the case
can be verified for the terms for which Iw~t/Cl # 0, by noting that the inequalities (11),
(12), (13), (16) and (18), which were used in the derivation of (20), turn into 
if we substitute tl = tf; for the terms for which Iw~t[I -- 0, equality (with both sides
zero) follows trivially. Therefore, if we find the update T as the orthonormal matrix that
minimizes g(T, Tc), we have ~(T) -< g(T, Tc) <- g(Tc, Tc) = ~(Tc). Hence this T
decreases the function ~. We will now show how this T can be found. Next, it will be
shown how this T can be adjusted such that it decreases the original function h as well.

It will now be described how we obtain the minimum of g(T, Tc) over orthonormal
T. The function g(T, Tc) can be written as

g(T, Tc) c + ~ pi-3/2lw~tflt~’(C - pI)tl + 2 ~’~ --1/21. ,.cl-1,c,~’_ _ ,= Pl IWl[l[ tl [WlWl
lEA

- w~wtI)tt - 

r

~ p[-l/2, sgn (w~tf) ¯ w~t/= c + E u~t~

I= 1

= c + tr U’T, (21)

with u/, the/-th column of U, defined as

Ul =- p[-3/2lw~t~l(Ct~ - pt/c) + 2p~-l/2lw~t~l-~(w~w~t~ - w~wtt~)

- 3pt-1/2. sgn (w~t~) Wl, (22)

if ]wit/c[ ~ o, and Ul = 0 if IwTt~l -- 0, 1 = 1, ..., r. Note that the choice ut = 0
implies that tt can be chosen arbitrarily, as long as it does not affect the orthonormality
of T. As explained below, we will always arrange that w~tf --- 0, l = 1, ... , r. Using
this, we can write (22) 

_ _-3/2/w,tC~(CtC -1/2 t c-1 ~ cu~=/,~ ~ t ~ t pt~)- - . (23)-- 2Pl (w/t/) w/wttt p~l/2wl

The problem of minimizing (21) has been solved by Cliff (1966). The matrix T 
minimizes g(T, Tc) subject to the constraint that T’T = I, can be obtained from the
singular value decomposition (SVD) of U, U = PDQ’ as T = -PQ’. Hence, by
updating T in this way, we will decrease ~(T).

Rather than decreasing ~(T) monotonically, we wish to decrease h(T) monotoni-
cally. This can be arranged as follows. We can always start the procedure of updating
Tc by reflecting all columns of Tc for which w~ttc < 0, because this does not affect the
value of ~(Tc), and can only decrease the value of h(Tc). Then this reflection makes
sure that ~(Tc) h(Tc). Next, we update Tc by theprocedure described above, such
that, for the update T, we have ~(T) -< ~(Tc) h(Tc). If for the update T wehave wit/
> 0 for/= 1 .... , r, we have h(T) = h(T)and hence h(T) _< h(Tc). Ifw~t/ 
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certain columns of T, we reflect these columns, and for the resulting Tr we have h(Tr)
< ~(T) <- ~(Tc) = h(Tc). Thus, by reflecting the relevant columns of the update T 
can always make sure that the original function h is decreased. By iteratively updating
T in the above described way, we decrease h monotonically. Because the function is
bounded below, the algorithm must converge to a stable function value. In the Appen-
dix it is proven, under mild assumptions, that, (Ti+l - Ti) converges to 0 and that T
satisfies the stationary equations at convergence.

For the above algorithm, it has been proven that (Ti+l - Ti) converges to 0, and
that this implies that either T converges to a continuum or to a local maximum, a local
minimum or a saddle point. However, the fact that the algorithm monotonically in-
creases f(T) causes that it is very unlikely that the algorithm stops in a local minimum
or even a saddle point. Convergence to a continuum of points seems rather unlikely as
well, and has not been encountered in our test analyses. Hence, the algorithm will
usually converge to at least a local maximum. Nothing guarantees that this local max-
imum will be the global maximum of the function f. By using different starting config-
urations, it is hoped that the global maximum of f will be found. In a later section we
report some results based on simulated data which indicate that the algorithm finds the
global maximum very often indeed. First, however, we give a schematic overview of
the above derived algorithm.

Schematic Overview of the Algorithm

The basic step in the present algorithm is described in (23) and below. The other
steps are merely initializations and definitions. The algorithm can be summarized as
follows:

Step 1. W: = A’B(Diag (B’B)) -1/2 (with columns W/).

Step 2. C: = A’A.
Step 3. p: = largest eigenvalue of C.
Step 4. Choose Tc (as an orthonormal initialization of T); if W’ c has negative

diagonal elements, multiply the corresponding columns of Tc by -1.
Step 5. f: = trW’Tc(Diag (T’cCTc))-~/2

Step 6. fold: = f.
forl: = 1 tor

Step7a. pl: = t/c’Ct/c;
Step 7b. ql: = w~ttc;
Step 7c. if ql # O, u/: = p[-3/Eql(Ct f - ptf) - 2p~-l/Eq~-lw~wltf 

p~-l/2wl;
ff ql = 0, Ill." = 0;

Step 8. Obtain P and Q from the SVD U = PDQ’.
Step 9. T: = -PQ’.
Step 10. If W’T has negative diagonal elements, multiply the corresponding col-

umns of T by -1.
Step 11. f: = trW’T(Diag (T’CT))-1/2.

Step 12. Iff < fold + e~[t] and, ff desired, liT - Tell < E2, where e1 and e2 are
small positive constants, consider the algorithm converged; else Tc : = T
and go to Step 6.

Performance of the Algorithm

The algorithm has been tested on 80 simulated data sets, each consisting of a
matrix A and a matrix B. We constructed these data by taking B equal to a random
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n x r matrix and A was computed as A = BDT’ + ~N, where D was a fixed diagonal
matrix (to be described below), T was a random orthonormal matrix, ~ was zero in half
the conditions (the perfect match conditions) and 8 = 1 in the other (imperfect match)
conditions, and, finally, N denotes a random n × r matrix. The random matrices were
constructed from elements drawn from the uniform distribution on the interval (-.5,
.5); in case of T, the obtained random matrix was orthonormalized. The matrices A, 
and N were of two different orders, 10 × 3, and 20 x 6. We used essentially two
different choices for D, one with values 1, 1.5 and 2, and the other with values I, 3, and
6; for the r = 6 cases each of these values occurred twice in D. According to this
design, we created 80 data sets (10 replications in each condition). We applied the
algorithm described above to each data set, using 20 different random starting config-
urations, as well as the "rational" start obtained from the Procrustes rotation. So for
each data set the algorithm was run 21 times. We considered the algorithm converged
if changes of the function value dropped below .0001% (eI = 10-6), which can be
considered a fairly strict convergence criterion. For the perfectly matching data, the
global maximum is known in advance; for the imperfect case, the best of the 21 runs
was considered to yield the global maximum. Function values smaller than the (alleged)
global maximum minus .001 were considered local optima. Our main interest is in
studying how often the algorithm misses the global maximum. In addition, we wanted
to gain some insight in computation times and numbers of iterations.

The algorithm has been programmed in PCMATLAB and tested on a personal
computer with 486-intel processor. It was first studied how often the algorithm found
the global maximum. In Table I, we report the percentage of runs that hit the global
maximum, both for the randomly and rationally started runs. These "hit rates" have
been reported separately for each condition, as well as averaged across conditions.
First of all, it can be seen that 79 of the 80 rationally started runs converged to the global
maximum, indicating that it is indeed rational to use the "rational" start. That the
rational starts are very good indeed can be seen from Table 2, where average maximal
function values and average function values at the rational start are reported for all
conditions. It can also be seen that, in the perfect match condition, the rational start
always led to the known maximal function value of 3 when r -- 3, and 6 when r = 6,
respectively. In all conditions more than 50% of the randomly started runs converged
to the global maximum. The hit rates for the smaller data were considerably larger than
those for the larger data (X2 = 17.6, p < .001). No other significant differences were
found, hence there is little or no reason to expect that data with certain particularly
unfavorable properties (other than large size) lead to large numbers of local minima.

The results for average time and average numbers of iterations are of course
closely related. We give both (see Table 1) because computation times may not 
informative for use at other machines or with other programming languages. As far as
computation time is concerned it can be concluded that rationally started runs are
considerably faster than randomly started runs (F = 53.8, p < .001), small data sets
could be analyzed much faster than large data sets (F = 915.2, p < .001), and data
where the columns of AT and B had widely different importances (D with values 1, 3,
6) converged much more slowly than those with mildly differing importances (F 
300.3, p < .001). No significant difference was found between "perfect" and "imper-
fect" data, which is convenient, since in practice we have no possibilities whatsoever
to manipulate this aspect of the data.

It can be concluded that the method is well behaved in that it almost always finds
the global maximum when it is started rationally, and finds the global maximum at least
every other time when it is started randomly. Moreover, computation times are fairly
small considering that a 20 × 6 problem with mildly differing importances took less than
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TABLE 1

Hit Rates, Average Computation Times (in seconds) and Average Numbers 

Iterations for Simulated Data

Random Start Rational Start

Data Type n×r D Hits Time Iter. Hits Time Iter.

Perfect 10×3 (1,13,2) 60.0% 1.8 58.7 100% 0.7 20.6

lOx3 (1,3,6) 63.5% 2.6 84.6 100% 1.3 42.0

20x6 (1,1½,2) 56.0% 7.1 127.9 100% 1.5 23.6

20x6 (1,3,6) 54.5% 18.0 323.6 100% 3.6 61.4

Imperfect 10x3 (i,i~,2) 75.0% 1.7 48.5 90% 0.7 17.8

fOx3 (1,3,6) 57.0% 3.8 I15.8 I00% 1.4 39.5

20x6 (i,1½,2) 51.0% 8.1 134.9 I00% 1.8 26.2

20x6 (1,3,6) 51.5% 17.8 284.9 I00% 4.8 67.9

Average 58.6% 7.6 147.4 99% 2.0 37.4

two seconds on the average, when started rationally, and less than 8 seconds when
started randomly. A series of 21 runs (which is usually more than enough) still would
take less than three minutes.

We also programmed Brokken’s Newton based algorithm, and applied it to all 80
data sets. It was soon observed that using a random start made the algorithm require
very many iterations before it landed in a stationary point. Moreover, in our test runs
this point never was the global maximum and often not even a local maximum. There-
fore, we only studied the algorithm systematically using the rational start. When started
rationally, Brokken’s algorithm found the global maximum in 38 (out of 40) of the cases
with little difference in importances, but only in 4 (out of 40) of the cases with large
differences in importances. This can be explained by the extremely good fit of the
rational starts in the conditions with little difference in importances and the somewhat
poorer starting fits in the other conditions (see Table 2). Whenever Brokken’s algorithm
found the global maximum, it found it in very few iterations (2 to 7). This does not imply
that Brokken’s algorithm is faster than the majorization based one, because the itera-
tions in Brokken’s algorithm are considerably more time consuming, especially for
large data sets. In our comparison, Brokken’s algorithm was slightly faster than the
majorization based one in the first 10 x 3 condition, but it was slower in the other
conditions, even though it converged in fewer iterations. However, as mentioned be-
fore, comparisons in computation time may depend heavily on the programming lan-
guage, so these results can only serve to give a rough indication. Moreover, a compar-
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TABLE 2

385

Average Maximal Function Values and Average Function Values

at the Rational Start for Simulated Data

Function Value

Data Type nxr D Maximum At Rational Start

Perfect 10x3 (1,1½,2) 3.00 2.99

10x3 (1,3,6) 3.00 2.85

20x6 (1,1½,2) 6.00 5.97

20x6 (1,3,6) 6.00 5.58

Imperfect 10x3 (1,1~,2) 2.49 2.48

10x3 (1,3,6) 2.76 2.68

20x6 (1,1½,2) 5.13 5.12

20x6 (1,3,6) 5.37 5.22

ison of computation time is not our main interest. Nonconvergence, or failure to find
the global maximum is more important. It turned out that, if Brokken’s algorithm
missed the global maximum the algorithm used very many iterations before it found a
stationary point, and in 9 cases it had not found a stationary point after 1000 iterations
(which was the maximum we used). To sum up, Brokken’s algorithm works well 
cases with extremely good starts, although even then it is not necessarily faster than the
majorization based algorithm. In cases where the rational start is relatively poor, the
Newton procedure is very unreliable, and the majorization based algorithm is to be
preferred.

Discussion

The majorization based algorithm proposed in the present paper turned out to
perform well in all cases considered. It was found that the rational start almost always
led to the global optimum. Indeed, in many cases the rational start already was quite
good, especially in the cases with relatively small differences in importances. In the
latter cases, Brokken’s Newton based procedure was unproblematic, and converged in
a few iterations, although not necessarily faster than the majorization based algorithm.
For such cases one might prefer to use the majorization based algorithm for other
reasons, like the ease of programming, or the fact that it can be started fruitfully from
different starts and hence can be used for checking for local optimality. In cases where
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importances differed much (1, 3, 6), the Newton procedure hardly ever found the global
maximum. Hence, it can be concluded that only the majorization based algorithm can
be advocated for general use. Moreover, the algorithm is easy to implement in any
matrix language.

The present paper provides a useful alternative algorithm for Brokken’s method.
The present paper is not concerned with the usefulness of Brokken’s criterion. By
offering a better algorithm, however, it facilitates a systematic comparison between, for
instance, Brokken’s criterion and Koschat and Swayne’s criterion.

Brokken (1985) has extended his method to the case where more than two matrices
are rotated simultaneously to maximal congruence. Let A l, ¯ ¯ ¯, Ap denote p matrices
of order n x r. Then his method aims at maximizing

p p r

F(TI, ... , Tp)= ~ ~’~ c~(Aitil, Aj tjl),
i=l j>i /=1

(24)

over Tl, ..., Tp, which are arbitrary orthonormal matrices. His algorithm for maxi-
mizing F is based on alternately updating one of the orthonormal matrices, Ti say,
considering the other orthonormal matrices fixed. As is readily verified (also, see
Brokken, 1985), the latter problem reduces to the problem of maximizing (I) with 
replaced by Ai and B by ~,;~i AjTj. Rather than using the Brokken (1983) procedure,
we propose to use our new procedure for finding each Ti. This procedure will mono-
tonically increase F, because each update of Ti increases F over Ti considering the Tj(j
= 1, ..., p, j ~ i) fixed.

The six Lemmas mentioned here have proven most useful in deriving a majorizing
function for the present problem. Some of these have been used in other contexts
(Groenen & Heiser, 199 I; Groenen, 1993; Kiers, 1995) as well. It seems likely that these
Lemmas may be of use to derive majorizing functions for other minimization problems,
which was one reason for stating and proving them extensively. The present paper has
demonstrated that the combination of such inequalities can lead to powerful results for
the construction of majorization based algorithms.

Appendix

In the present paper, an algorithm has been proposed that decreases the function
~ monotonically, and that, because ~ is bounded below, converges to a stable function
value. Let Ti denote the matrix T at iteration i, then this result implies that Limi~oo
~(Ti) = h*, for a certain value h*. In the present appendix, it will be shown that, under
some mild assumptions, this result also implies that the difference between (Ti - Ti+ 1)
converges to zero, and that Ti satisfies the stationary equations as i --~ ~. One of these
assumptions is that Limi_~ (w~t/) ~ 0 for all I. The other will be mentioned where 
is used.

To prove that (Ti - Ti+l) converges to zero, we use the monotonicity of the
algorithm (that is, h(Ti+l) -< h(Ti)) and the facts that k(T, Ti) =-- El (hi(t/) + hE(t/)
+ h3(t/)) majorizes ~(T), see (20), and that Ti) i n turn is major ized by g(T, Ti) ~

Y~l (g~(t/) + gE(t/.) + ga(t/)), with equality Ti. Notethatsummationsare over
all l because w~t/ # 0 for all l by assumption. Thus we have the sequence

~(Ti+1) _< k(Ti+1, Ti) <_ g(T i+1, Ti) <_ g(T i, Ti) = ~l(Ti). (25)

From Limi...~ ~(Ti) = h* it follows that Limi_,oo (~(Ti+1) - ~(Ti)) --- 0, hence
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Lira (k(T i+1 , Ti) - g(T i+1, Ti)) = 0, (26)

and because hi(t//+1)- gl(t//+1) -< 0, h2(t//+1) - g2(t//+1) < 0,andh3(t /i+1) _

g3 (t/+l) -< 0, for all l, it follows that, among others,

Lira (hi (t~+1) - gl (t~+1)) = (27)

From (14), multiplied by p/-I iw~t[i ’ and the definition of hi and gl in (15), we have,

with Pl -- (t]’Ct]),

hl(t~ +1) gl(t~+1) -1 , i i+l, i+1 1/2_ _
- =Pl Iwltl[((tl Ctt ) p~l/Et],(C_pi)t~+l pp~-l/2)

1= ~ p~-3/21w,~t~l(_(p]/2-- ~tl~" i*1,~,, i*lx~.~tl ! 1/2) 

+ (t~+l - t~)’(C - pI)(t~+1 - t~)). (28)

Clearly, p~-3/2 is strictly nonzero and does not tend to zero, because this would require
pt to tend to ~. Because, in addition, Limi__,~ [w[t/[ ~ 0, and the two additive terms
in (28) are both nonpositive, it follows from (27) that Limi_,~ (pl 1/2 - (t[+l’Ct[ +~) 1/2)
= 0 and Lim;_,oo (t/+1 - t//)~(C pI)(t[ +1 - t/ ) = 0.From thelatt er it f oll ows that

(t/+~ or Limi__,~ (t//+1 - t/) is in the null space of (C - pI).Limi__,~ - t/) = 0,
Similarly, it follows from (26) that

Lira (h2(t~+1) - g2(t~+l)) = (29)

From (17) we have

h2(t~+l) g2(t~+l)_ _-!/21. ,.il-I//.,.i+Ix2 i, -- --Pl IWlt/I ~Wltl I + tl WlWltl

2t~’(w/w~ i+l- - wtw~I)tt - 2wlw/)

= p/-1/2[wlt~[-~((t~+1 ,- tt) (wtw/- (w~w~)I)(t~+1 - t~)). (30)

Becausep/- 1/2 and [w~t/I - 1 are strictly nonzero and do not tend to zero, it follows from
(29) and (30) 

Lim (t~ +1 - t~)’(w~w~ - (w~wt)I)(t] +1 - t~) = 0. (31)

Hence Limi_,~ (t//+1 - t/) = 0, or Limi_.,~ (t/+1 - t//) is in the null space of (w~w~ 
(W[Wl)l) and therefore proportional to I.

In practice, the combination of these results implies that Lim/_,~ (t//+~ - t/) = 
The alternatives could hold only when w~ happens to be in the null space of C - pl,
which can safely be assumed not to be the case in practice. Thus it has been proven
that, under our assumptions, Lim/_,~ (T/+~ - t/) = 0 for all 

It has now been proven that Limit® (Ti+t - Ti) = O. According to Ostrowski
(1969, p. 203) this implies that T converges to a single limit point or a continuum of limit
points. It will next be proven that for this point (or this continuum of points) the
stationary equation for the problem of minimizing h(T) subject to T’T = I is satisfied.
In other words, it will be proven that the stationary equation is satisfied as i --, oo. From
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the fact that Ti+l minimizes g(T, Ti) in (21), it follows that, writing Ui for the matrix

U based on Ti,

Ui= Ti+l~i (32)

for a negative semidefinite matrix @ i. The equation for the/-th columns of the left- and
right-hand side of (32) is given 

(t[’Ct[)-3/2(w~t~)(Ct~ pt~) i, i-1/2, i-l, ,i-- -- 2(t I Ctl) (wltt) w~w~/

- (t[’Ct[)-l/2wt = Ti+~o~,

where 0t/ is the/-th column of Oi. Because Limi_~ (t/+l - t//) = 0, we have

Lim ((t[’Ct[) -3/2 , i i(Wltl)(Ct I - pt~) - 2(t~’Ct~)-l/2t.kWltl!,,ix-l.wlWl~l,. ,i

- (t[’Ct[)-1/2W/ -- TiO[)

i~ i -3/2 ~ i i_ " " -3/2~. ~i~i= Elm (-(t~’Ct[)-l/Ewl (t / Ctl) (W ltl)Ct~ P(t~’CtD ~*

~ l~ l!~Zti’’~tix-1/2l. ,,ix-1. ,. ,i Tit~i~v~lj O.~Wltl! WlWlt I --

(33)

(34)

The stationary equations for h(T) are given by T’T = I (which is satisfied for all Ti) and

- (t~Ctl)-l/2wt (w~tt)(t~Ctl)-3/2Ctl - Td= 0, (35)

l = 1 .... , r, where *l is the/-th column of a symmetric Lagrange multiplier matrix

¯ . Upon defining the symmetric matrix ~i with/-th column

~b~-= 0~ + (p(t~’Ct~)-3/2(w~t~) + 2(t~’Ct~)-l/2(w~t~)-lw~wt)et, (36)

where eI is the/-th column of the identity matrix, we have from (34)

i~ i-3/2 ~ i i__Lim (-(t~’Ct:)-~/2w I + (t/ Ctl) (wltl)Ct t Tidp~) = O. (37)

This implies that, in the limit where i-~ ~, the stationary equation (35) is satisfied. Thus
it has been proven that the stationary equations are satisfied at convergence. It follows
that, if the algorithm converges to a single point (rather than a continuum), then this
accumulation point must. be a local maximum, a local minimum, or a saddle point.

The present proof relies on the assumption that wit] ~ 0 for all l. In practice, we
have seen no violations of this assumption. If it would be violated, we could use an
alternative algorithm that avoids this problem, but this alternative is much slower than
the one presented in the paper. Because there seems no practical urge to use this
algorithm, we have ignored it in the present paper.
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